GPU Databases

Good Article on Why AI Projects Fail

Posted on Updated on

high angle photo of robot
Photo by Alex Knight on Pexels.com

Today I ran across this very good article as it focused on lessons learned, which potentially helps everyone interested in these topics. It contained a good mix of problems at a non-technical level.

Below is the link to the article and commentary on the Top 3 items listed from my perspective.

https://www.cio.com/article/3429177/6-reasons-why-ai-projects-fail.html

Item #1: 

The article discusses how the “problem” being evaluated was misstated using technical terms. At least some of these efforts are conducted “in a vacuum.” Given the cost and strategic importance of getting these early-adopter AI projects right, that was a surprise.

In Sales and Marketing, you start the question, “What problem are we trying to solve?” and evolve that to, “How would customers or prospects describe this problem in their own words?” Without that understanding, you can neither initially vet the solution nor quickly qualify the need for your solution when speaking with those customers or prospects. That leaves room for error when transitioning from strategy to execution.

Increased collaboration with Business would likely have helped. This was touched on at the end of the article under “Cultural challenges,” but the importance seemed to be downplayed. Lessons learned are valuable – especially when you are able to learn from the mistakes of others. This should have been called out early as a major lesson learned.

Item #2: 

This second area had to do with the perspective of the data, whether that was the angle of the subject in photographs (overhead from a drone vs horizontal from the shoreline) or the type of customer data evaluated (such as from a single source) used to train the ML algorithm.

That was interesting because assumptions may have played a part in overlooking other aspects of the problem, or the teams may have been overly confident about obtaining the correct results using the data available. In the examples cited, those teams figured out those problems and took corrective action. A follow-up article describing the process used to determine the root cause in each case would be very interesting.

As an aside, from my perspective, this is why Explainable AI is so important. Sometimes, you just don’t know what you don’t know (the unknown unknowns). Understanding why and on what the AI is basing its decisions should help with providing better quality curated data up-front, as well as identifying potential drifts in the wrong direction while it is still early enough to make corrections without impacting deadlines or deliverables.

Item #3: 

This didn’t surprise me but should be a cause for concern as advances are made at faster rates, and potentially less validation is made as organizations race to be first to market with some AI-based competitive advantage. The last paragraph under ‘Training data bias’ stated that based on a PWC survey, “only 25 percent of respondents said they would prioritize the ethical implications of an AI solution before implementing it.

Bonus Item:

The discussion about the value of unstructured data was very interesting, especially when you consider:

  1. The potential for NLU (natural language understanding) products in conjunction with ML and AI.
  2. The importance of semantic data analysis relative to any ML effort.
  3. The incredible value that products like MarkLogic’s database or Franz’s AllegroGraph provide over standard Analytics Database products.
    • I personally believe that the biggest exception to this assertion will be from GPU databases (like OmniSci) that easily handle streaming data, can accomplish extreme computational feats well beyond those of traditional CPU-based products, and have geospatial capabilities that provide an additional dimension of insight to the problem being solved.

Update: This is a link to a related article that discusses trends in areas of implementation, important considerations, and the potential ROI of AI projects: https://www.fastcompany.com/90387050/reduce-the-hype-and-find-a-plan-how-to-adopt-an-ai-strategy

This is definitely an exciting space that will experience significant growth over the next 3-5 years. The more information, experiences, and lessons learned are shared, the better it will be for everyone.

Ideas are sometimes Slippery and Hard to Grasp

Posted on Updated on

I started this blog with the goal of becoming an “idea exchange,” as well as a way to pass along lessons learned to help others. Typical guidance for a blog is to focus on one thing and do it well to develop a following. That is especially important if you want to monetize the blog, but that is not and has not been my goal.

One of the things that has surprised me is how different the comments and likes are for each post. Feedback from the last post was even more diverse and surprising than usual. It ranged from comments about “Siri vs Google” to feedback about Sci-Fi books and movies to Artificial Intelligence.

I asked a few friends for feedback and received something very insightful (Thanks Jim). He stated that he found the blog interesting but wasn’t sure of the objective. He went on to identify several possible goals for the last post. Strangely enough (or maybe not), his comments mirrored the type of feedback that I received. That pointed out an area for improvement, and I appreciated that as well as the wisdom of focusing on one thing. Who knows, maybe in the future…

This also reminded me of a white paper written 12-13 years ago by someone I used to work with. It was about how Bluetooth would be the “next big thing.” He had read an IEEE paper or something and saw potential for this new technology. His paper provided the example of your toaster and coffee maker communicating so that your breakfast would be ready when you walk into the kitchen in the morning.

At that time, I had a couple of thoughts. Who cared about something that only had a 20-30-foot range when WiFi had become popular and had a much greater range? In addition, a couple of years earlier, I had a tour of the Microsoft “House of the Future,” in which everything was automated and key components communicated. But everything in the house was all hardwired or used WiFi – not Bluetooth. It was easy to dismiss his assertion because it seemed to lack pragmatism. The value of the idea was difficult to quantify, given the use case provided.

Idea 2

Looking back now, I view that white paper as having insight. If it was visionary, he would have come out with the first Bluetooth speakers, car interface, or even phone earpiece and gotten rich, but it failed to present practical use cases that were easy enough to understand yet different enough from what was available at the time to demonstrate the real value of the idea. His expression of idea was not tangible enough and, therefore, too slippery to be easily grasped and valued.

I believe that good ideas sometimes originate where you least expect them. Those ideas are often incremental – seemingly simple and sometimes borderline obvious, often building on another idea or concept. An idea does not need to be unique to be important or valuable, but it needs to be presented in a way that makes it easy to understand the benefits, differentiation, and value. That is just good communication.

One of the things I miss most from when my consulting company was active was the interaction between a couple of key people (Jason and Peter) and myself. Those guys were very good at taking an idea and helping build it out. This worked well because we had some overlapping expertise and experiences as well as skills and perspectives that were more complementary. That diversity increased the depth and breadth of our efforts to develop and extend those ideas by asking the tough questions early and ensuring we could convince each other of the value.

Our discussions were creative, highly collaborative, and a lot of fun. We improved from them, and the outcome was usually viable from a commercial perspective. As a growing and profitable small business, you must constantly innovate to differentiate yourself. Our discussions were driven as much by necessity as intellectual curiosity, and I believe this was part of the magic.

So, back to the last post. I view various technologies as building blocks. Some are foundational, and others are complementary. To me, the key is not viewing those various technologies as competing with each other. Instead, I look for potential value created by integrating them with each other. That may not always be possible and does not always lead to something better, but occasionally it does, so to me, it is a worthwhile exercise. With regard to voice technology, I believe we will see more, better, and smarter applications of it – especially as real-time and AI systems become more complex due to the use of an increasing number of specialized chips, component systems, geospatial technology, and sensors.

While today’s smartphone interfaces would not pass the Turing Test or proposed alternatives, they are an improvement over more simplistic voice translation tools available just a few years ago. Advancement requires the tools to understand context in order to make inferences. This brings you closer to machine learning, and big data (when done right) significantly increases that potential.

Ultimately, this all leads back to Artificial Intelligence (at least in my mind). It’s a big leap from a simple voice translation tool to AI, but it is not such a stretch when viewed as building blocks.

Now think about creating an interface (API) that allows one smart device to communicate with another, like the collaborative efforts described above with my old team. It’s not simply having a front-end device exchanging keywords or queries with a back-end device. Instead, it is two or more devices and/or systems having a “discussion” about what is being requested, looking at what each component “knows,” making inferences based on location and speed, asking clarifying questions and making suggestions, and then finally taking that multi-dimensional understanding of the problem to determine what is really needed.

So, possibly not true AI (yet), but a giant leap forward from what we have today. That would help turn the science fiction of the past into science fact in the near future. The better the understanding and inferences by the smart system, the better the results.

I also believe that the unintended consequence of these new smart systems is that they will likely make errors or have biases like a human as they become more human-like in their approach. Hopefully, those smart systems will be able to automatically back-test recommendations to validate and minimize errors. If they are intelligent enough to monitor results and suggest corrective actions when they determine that the recommendation does not have the optimal desired results, they would become even “smarter.” There won’t be an ego creating a distortion filter about the approach or the results. Or maybe there will…

Many of the building blocks required to create these new systems are available today. But it takes vision and insight to see that potential, translate ideas from slippery and abstract to tangible and purposeful, and then start building something cool and useful. As that happens, we will see a paradigm shift in how we interact with computers and how they interact with us. It will become more interactive and intuitive. That will lead us to the systematic integration that I wrote about in a big data / nanotechnology post.

So, what is the real objective of my blog? To get people thinking about things differently, to foster collaboration and partnerships between businesses and educational institutions to push the limits of technology, and to foster discussion about what others believe the future of computing and smart devices will look like. I’m confident that I will see these types of systems in my lifetime, and I believe in the possibility of this occurring within the next decade.

What are your thoughts?

What’s so special about Spatial?

Posted on Updated on

Two years ago, I was assigned some of the product management responsibilities and product marketing work for a new version of a database product we were releasing. To me, this was the trifecta of bad fortune. I didn’t mind product marketing, but I knew it took a lot of work to do well. I didn’t feel that product management was a real challenge (I was so wrong here), and even though we saw more demand for products supporting Esri’s ArcGIS, I wasn’t interested in working with maps.

I was so wrong in so many ways. I didn’t realize real product management was as much work as product marketing. And I learned that geospatial was far more than just maps. It was quite an eye-opening experience for me – one that also turned out to be very valuable.

First, let me start by saying that I now greatly appreciate Cartography. I never realized how complex mapmaking is and how there is just as much art as science (a lot like programming). Maps can be so much more than just simple drawings.

I had a great teacher when it came to geospatial – Tyler Mitchell (@spatialguru). He showed me the power of overlaying tabular business data with common spatial data (addresses, zip / postal codes, coordinates) and presenting the “conglomeration of data” in layers that made things easier to understand. I believe that “people buy easy,” which makes this a good thing in my book.

The more I thought about this technology – simple points, lines, and areas combined with powerful functions, the more I began to think about other uses. I realized that you could use it to correlate very different data sets and graphically show relationships that would otherwise be extremely difficult to make.

For example, think about having access to population data, demographic data, business and housing data, crime data, health/disease data, etc.  Now, consider a simple, easy-to-use graphical dashboard that overlaps as many data sets as needed. Within seconds, you see very specific clusters of geographically correlated data, which may bring attention to other correlations.

Some data may only be granular to a zip code or city, but others will allow you to identify patterns in specific streets and neighborhoods. Just think of how something so simple can help you make decisions that are so much better. It’s interesting how few businesses take advantage of this cost-effective technology.

If that wasn’t enough, just think about location-aware applications and the proliferation of smart devices and IoT that completely lend themselves to many helpful and lucrative mobile applications. Even more than that, they make those devices more helpful and user-friendly. Just think about how easy it is to find the nearest Indian restaurant when the thought of curry for lunch hits you.  And these things are just the tip of the iceberg.

What a lucky day for me when I was assigned this work that I did not want. Little did I know that it would change my thoughts about many things. That’s just the way things work out sometimes.