Big Data

Big Data – The Genie is out of the Bottle!

Posted on

Back in early 2011 myself and 15 other members of the Executive team at Ingres were taking a bet on the future of our company. We knew that we needed to do something big and bold, and decided to build what we thought the standard data platform would be in 5-7 years. A small minority of the people on that team did not believe this was possible and left, while the rest of us focused on making that happen. There were three strategic acquisitions to fill-in the gaps on our Big Data platform. Today (as Actian) we have nearly achieved our goal. It was a leap of faith back then, but our vision turned out to be spot-on and our gamble is paying off today.

Every day my mailbox is filled with stories, seminars, white papers, etc. about Big Data. While it feels like this is becoming more mainstream, it is interesting to read and hear the various comments on the subject. They range from, “It’s not real” and “It’s irrelevant” to “It can be transformational for your business” to “Without big data there would be no <insert company name here>.”

Illustration of smoke coming out of a brass lantern

What I continue to find amazing is hearing comments about big data being optional. It’s not – that genie has already been let out of the bottle. There are incredible opportunities for those companies that understand and embrace the potential. I like to tell people that big data can be their unfair advantage in business. Is that really the case? Let’s explore that assertion and find out.

We live in the age of the “Internet of Things.” Data about nearly everything is everywhere, and the tools to correlate that data to gain understanding of so many things (activities, relationships, likes and dislikes, etc.)  With smart devices that enable mobile computing we have the extra dimension of location. And, with new technologies such as Graph Databases (based on SPARQL), graphic interfaces to analyze that data (such as Sigma), and identification technology such as Stylometry, it is getting easier than ever to identify and correlate that data.

We are generating increasingly larger and larger volumes of data about everything we do and everything going on around us, and tools are evolving to make sense of that data better and faster than ever. Those organizations that perform the best analysis, get the answers fastest, and act on that insight quickly are more likely to win than the organizations that look at a smaller slice of the world or adopt a “wait and see” posture. So, that seems like a significant advantage in my book. But, is it an unfair advantage?

First, let’s keep in mind that big data is really just another tool. Like most tools it has the potential for misuse and abuse. And, whether a particular application is viewed as “good” or “bad” is dependent on the goals and perspective of the entity using the tool (which may be the polar opposite view of the groups of people targeted by those people or organizations).  So, I will not attempt to make judgments about the various use cases, but rather present a few use cases and let you decide.

Scenario 1 – Sales Organization: What if you could not only understand what you were being told a prospect company needs, but also had a way to validate and refine that understanding? That’s half the battle in sales (budget, integration, and support / politics are other key hurdles). Data that helped you understand not only the actions of that organization (customers and industries, sales and purchases, gains and losses, etc.), but also the goals, interests and biases of the stakeholders and decision makers. This could provide a holistic view of the environment and allow you to provide a highly targeted offering, with messaging tailored to each individual. That is possible, and I’ll explain soon.

Scenario 2 – Hiring Organization: As a hiring manager there are many questions that cannot be asked. While I’m not an attorney, I would bet that State and Federal laws have not kept pace with technology. And, while those laws vary state by state, there are likely loopholes that allow for use of public records. Moreover, implied data that is not officially taken into consideration could color the judgment of a hiring manager or organization. For instance, if you wanted to “get a feeling” if a candidate might fit-in with the team or the culture of the organization, or have interests and views that are aligned with or contrary to your own, you could look for personal internet activity that would provide a more accurate picture of that person’s interests.

Scenario 3 – Teacher / Professor: There are already sites in use to search for plagiarism in written documents, but what if you had a way to make an accurate determination about whether an original work was created by your student? There are people who, for a price, will do the work and write a paper for a student. So, what if you could not only determine that the paper was not written by your student, but also determine who the likely author was?

Do some of these things seem impossible, or at least implausible? Personally, I don’t believe so. Let’s start with the typical data that our credit card companies, banks, search engines, and social network sites already have related to us. Add to that the identified information that is available for purchase from marketing companies and various government agencies. That alone can provide a pretty comprehensive view of us. But, there is so much more that’s available.

Think about the potential of gathering information from intelligent devices that are accessible through the Internet, or your alarm and video monitoring system, etc. These are intended to be private data sources, but one thing history has taught us is that anything accessible is subject to unauthorized access and use (just think about the numerous recent credit card hacking incidents).

Even de-identified data (medical / health / prescription / insurance claim data is one major example), which receives much less protection and can often be purchased, could be correlated with a reasonably high degree of confidence to gain understanding on other “private” aspects of your life. The key is to look for connections (websites, IP addresses, locations, businesses, people), things that are logically related (such as illnesses / treatments / prescriptions), and then make as accurate of an identification as possible (stylometry looks at things like sentence complexity, function words, co-location of words, misspellings and misuse of words, etc. and will likely someday take into consideration things like idea density). It is nearly impossible to remain anonymous in the Age of Big Data.

There has been a paradigm shift when it comes to the practical application of data analysis, and the companies that understand this and embrace it will likely perform better than those who don’t. There are new ethical considerations that arise from this technology, and likely new laws and regulations as well. But for now, the race is on!

Spurious Correlations – What they are and Why they Matter

Posted on Updated on

In an earlier post I mentioned that one of the big benefits of geospatial technology is its ability to show connections between complex and often disparate data sets. As you work with Big Data you tend to see the value of these multi-layered and often multi-dimensional perspectives of a trend or event. While that can lead to incredible results, it can also lead to spurious correlations of data. Image containing the word "Technology"

First, let me state that I am not a Data Scientist or Statistician, and there are definitely people far more expert on this topic than myself.  But, if you are like the majority of companies out there experimenting with geospatial and big data it is likely that your company doesn’t have these experts on-staff. So, a little awareness, understanding, and caution can go a long way in this type of scenario.

Before we dig into that more, let’s think about what your goal is. Do you want to be able to identify and understand a particular trend (reinforcing actions and/or behavior), or do you want to understand what triggers a specific event (initiating a specific behavior). Both are important, but they are both different. My personal focus has been on identification of trends so that you can leverage or exploit them for commercial gain. While that may sound a big ominous, it is really what business is all about.

There is a common saying that goes, “Correlation does not imply causation.”  A common example is that for a large fire you may see a large number of fire trucks.  There is a correlation, but it does not imply that fire trucks cause fires. Now, extending this analogy, let’s assume that in a major city the probability of multi-tenant buildings starting on fire is relatively high. Since they are a big city, it is likely that most of those apartments or condos have WiFi hotspots. A spurious correlation would be to imply that WiFi hotspots cause fires.

As you can see, there is definitely potential to misunderstand the results of correlated data. More logical analysis would lead you to see the relationships between the type of building (multi-tenant residential housing) and technology (WiFi) or income (middle-class or higher). Taking the next step to understand the findings, rather than accepting them at face value, is very important.

Once you have what looks to be an interesting correlation there are many fun and interesting things you can do to validate, refine, or refute your hypothesis. It is likely that even without high-caliber data experts and specialists you will be able to identify correlations and trends that can provide you and your company with a competitive advantage.  Don’t let the potential complexity become an excuse for not getting started, because as you can see above it is possible to gain insight and create value with a little effort and simple analysis.

There’s a story in there – I just know it…

Posted on

I was reading an article from Nancy Duarte about Strengthening Culture with Storytelling, and it made me think about how important a skill story telling can be in business, and how it can be far more effective than just presenting facts / data. These are just a few examples – I’m sure that you have many of your own.Storytelling

One of the best sales people that I’ve ever known wasn’t a sales person at all. It is Jon Vice, former CEO of the Children’s Hospital of Wisconsin. Jon is very personable and has the ability to make each person feel like they are the most important person in the room (quite a skill in itself). Jon would talk to a room of people and tell a story. Mid-story you were hooked. You completely bought what he was selling, often without knowing what the “ask” was. It was amazing to experience.

Years ago when my company was funding medical research projects, my oldest daughter (then only four years old) and I watched a presentation on the mid-term findings of one of the projects. The MD/Ph.D. giving the presentation was impressive, but what he showed was slide after slide of data. After 10-15 minutes my daughter held her Curious George stuffed animal up in front of her (where the shadow would be seen on the screen) and proclaimed, “Boring!”

Six months later that same person gave his wrap-up presentation. It was short, told an interesting story that explained why these findings were important, laying the groundwork for a follow-on project. A few years later he commented that this was a very valuable lesson because the story with data was far more compelling than just the data itself.

A few years ago the company I work for introduced a high-performance analytics database. We touted that our product was 100 times faster than other products, which happened to be a similar message used by a handful of competitors. In my region we created a “Why Fast Matters” webinar series and told the stories of our early Proof of Value efforts. This helped my team make the first few sales of this new product. People understood our value proposition because these success stories made it tangible.

What I tell my team is to weave the thread of our value proposition into the fabric of a prospect’s story. This both makes us part of the story, and also makes this new story their own (as opposed to being our story). This simple approach has been effective, and also helps you qualify out sooner if you can’t improve the story.

What if you not selling anything? Your data has a story to tell – even more so with big data. Whether you are analyzing data from a single source (such as audit or log data), or correlating data from multiple sources, the data is telling you a story. Whether patterns, trends, or correlated events – the story is there. And once you find it there is so much you can do to build it out.

Whether you are selling, managing, teaching, coaching, analyzing, or just hanging out with friends or colleagues, being able to entertain with a story is a valuable skill. This is a great way to make a lot of things in business even more interesting and memorable. So, give it a try.

Getting Started with Big Data

Posted on Updated on

Image

Being in Sales I have the opportunity to speak to a lot of customers and prospects about many things. Most are interested in both Cloud Computing and Big Data, but often they don’t fully understand how they will leverage the technology to maximize the benefit. There is a simple three-step process that I use:

1. Explain that there is no single correct answer. There are still many definitions, so it is more important to focus on what you need than on what you call it.

2. Relate the technology to something people are likely already familiar with (extending those concepts). For example: Cloud computing is similar to virtualization, and has many of the same benefits; Big Data is similar to data warehousing.

3. Provide a high-level explanation of how “new and old” are different. For example: Cloud computing often occurs in an external data center – possibly one that you may not even know where it is, so security is even more complex and important than with in-house systems and applications; Big Data often uses data that is not from your environment – possibly even data that you do not know will have value or not, so robust integration tools are very important.

Big Data is a little bit like my first house. I was newly married, anticipated having children, and anticipated moving into a larger house in the future. My wife and I started buying things that fit into our vision of the future and storing it in our basement. We were planning for a future that was not 100% known.

But, our vision changed over time and we did not know exactly what we needed until the very end. After 7 years our basement was very full and it was difficult to find things.  When we moved to a bigger house we did have a lot of what we needed. We also had things in storage that we no longer wanted or needed. And, there were a few things we wished that we had purchased earlier. We did our best, and most of what we did was beneficial.

How many of you would have thought that Social Media Sentiment Analysis would be important 5 years ago? How many would have thought that hashtag usage would have become so pervasive in all forms of media? How many understood the importance of location information (and even the time stamp for that location)? My guess is that it would not be many.

This ambiguity is both the good and bad thing about big data. In the old data warehouse days you knew what was important because this was your data about your business, systems, and customers.  While IT may have seemed tough before, it can be much more challenging now. But, the payoff can also be much larger so it is worth the effort.

Now we care about unstructured data (website information, blog posts, press releases, tweets, etc.), streaming data (stock ticker data is a common example), sensor data (temperature, altitude, humidity, location, lateral and horizontal forces – think logistics), etc.  So, you are getting data from multiple sources having multiple time frame references (e.g., constant streaming versus hourly updates), often in an unknown or inconsistent format. Many times you don’t know what you don’t know – and you just need to accept that.

In a future post I will discuss scenarios that take advantage of Big Data, and why allowing some ambiguity and uncertainty in your model could be one of the best things that you have ever done.  But for now take a look at the links below for more basic information:

This article discusses why Big Data matters, and how you can get value without needing complex analytics.

Big Data article that discusses the importance of taking action quickly to gain a competitive advantageNote: Free registration to the site may be required to view this article.

This article (Big Data is the Tower of Babel) discusses the importance of data integration.

This short article discusses three important considerations for a Big Data project. While correct, the first point is really the key when getting started.

This is a good high-level article on Hadoop 2.0.  Remember how I described the basement in my first house? That’s how Hadoop is utilized in many cases.