Technology

Getting Started with Big Data

Posted on Updated on

Image

Being in Sales I have the opportunity to speak to a lot of customers and prospects about many things. Most are interested in Cloud Computing and Big Data, but often they don’t fully understand how they will leverage the technology to maximize the benefit.

Here is a simple three-step process that I use:

1. For Big Data I explain that there is no single correct definition. Because of this I recommend that companies focus on what they need rather than on what to call it. Results are more important than definitions for these purposes.

2. Relate the technology to something people are likely already familiar with (extending those concepts). For example: Cloud computing is similar to virtualization and has many of the same benefits; Big Data is similar to data warehousing. This helps make new concepts more tangible in any context.

3. Provide a high-level explanation of how “new and old” are different, and why new is better using specific examples that they should relate to. For example: Cloud computing often occurs in an external data center – possibly one that you may not even know where it is, so security can be even more complex than with in-house systems and applications. It is possible to have both Public and Private Clouds, and a public cloud from a major vendor may be more secure and easier to implement than a similar system using your own hardware;

Big Data is a little bit like my first house. I was newly married, anticipated having children and also anticipated moving into a larger house in the future. My wife and I started buying things that fit into our vision of the future and storing it in our basement. We were planning for a future that was not 100% known.

But, our vision changed over time and we did not know exactly what we needed until the very end. After 7 years our basement was very full and it was difficult to find things.  When we moved to a bigger house we did have a lot of what we needed. But, we also had many things that we no longer wanted or needed. And, there were a few things we wished that we had purchased earlier. We did our best, and most of what we did was beneficial, but those purchases were speculative and in the end there was some waste.

How many of you would have thought that Social Media Sentiment Analysis would be important 5 years ago? How many would have thought that hashtag usage would have become so pervasive in all forms of media? How many understood the importance of location information (and even the time stamp for that location)? My guess is that it would be less than 50% of all companies.

This ambiguity is both the good and bad thing about big data. In the old data warehouse days you knew what was important because this was your data about your business, systems, and customers.  While IT may have seemed tough before, it can be much more challenging now. But, the payoff can also be much larger so it is worth the effort. Many times you don’t know what you don’t know – and you just need to accept that.

Now we care about unstructured data (website information, blog posts, press releases, tweets, etc.), streaming data (stock ticker data is a common example), sensor data (temperature, altitude, humidity, location, lateral and horizontal forces), temporal data, etc.  Data arrives from multiple sources and likely will have multiple time frame references (e.g., constant streaming versus updates with varying granularity), often in unknown or inconsistent formats.

Robust and flexible data integration, data protection, and data privacy will all become far more important in the near future! This is just the beginning for Big Data.

The Power of Simplicity

Posted on Updated on

If you can’t explain it simply, you don’t understand it well enough.”  – Albert Einstein

I actually didn’t care much for consultants in the first part of my career. My experience was that people would come in, tell you what to do, and then leave victoriously while we were stuck trying to implement something that just wouldn’t work. It seemed that they made everything seem so complex – often as a way to justify their cost.

Then, I met a really amazing consultant who shared something valuable with me. He explained what he believed differentiated a true consultant from a contractor (something I wrote about a decade later in a Tech Republic article).  He then made me aware of the Einstein quote above. This was one of those pivotal moments in my career.

Over the course of many years I have met many interesting people. Some seemed to try to intentionally obfuscate even the easiest things to try making themselves seem brilliant. Others took such a circuitous route that you sometimes forgot about what you were trying to understand and fix. And sometimes explanations were just so tangential that the main point was completely lost. There are likely many reasons for these experiences – some intentional and many not. The real lesson learned is that it wasn’t just consultants who have the ability to be incomprehensible, and that clear and comprehensible communication is key to effectiveness.

Just think about the power of a well crafted “elevator pitch” when you meet someone new, or the ability to quickly explain how your company differentiates itself from the competition (making you the better or safer choice in your prospect’s mind). Or, being able to articulate your business strategy in a way that people not only understand, but also so interests them enough where they want to learn more and be part of making that happen. This goes well beyond just having good communication skills.

The best consultants have this ability to explain something simply, as do the best employees, the best managers, the best executives, and the best business owners.  While this is only one attribute of success (likability, powers of persuasion, integrity, luck, etc. are others), it is something that can be taught, developed, and consistently applied.

The power to “explain it simply” is the power to make a difference.

Using Technology for the Greater Good

Posted on Updated on

For several years my company and my family funded a dozen or so medical research projects. I had the pleasure of meeting and working with many brilliant MD/Ph.D. researchers. My goal was to fund $1 million of medical research and find a cure for Arthritis. We didn’t reach that goal, but many good things came out of that research.

Something that amazed me was how research worked. Competition for funding is intense, so there was much less collaboration between institutions than I would have expected. At one point we were funding similar projects at two institutions. The projects went in two very different directions, and it was clear to me that one was going to be much more successful than the other. It seemed almost wasteful, and I thought that there must be a better, more efficient and cost-effective way of managing research efforts.

So, in 2006 I had an idea. What if I could create a cloud based (a very new term at the time) research platform that would support global collaboration? It would need to support true analytical processing, statistical analysis, document management (something else that was fairly new at the time), and desktop publishing at a minimum. Publishing research findings is very important in this space, so my idea was to provide a workspace that supported end-to-end research efforts (inception to publication) and fostered collaboration.

This platform would only really work if there were a new way to allow interested parties to fund this research that was easy to use and could reach a large audience. People could make contributions based on area of interest, specific projects, specific individuals working on projects, or projects in a specific regional area. The idea was a lot like what Crowdtilt (www.crowdtilt.com) is today. This funding mechanism would support non-traditional collaboration, and would hopefully have a huge impact on the research community and their findings.

Additionally, this platform would support the collection of suggestions and ideas. Good ideas can come from anywhere  especially when you don’t know that something is not supposed work.

During one funding review meeting I made a naïve statement about using cortisone injections to treat TMJ arthritis. I was told why this would not work. But, a month or so later I received a call explaining how this might actually work – Conceptual Expansion at its best! That led to new a research project and positive results (see http://onlinelibrary.wiley.com/doi/10.1002/art.21384/pdf).

You never know where the next good idea might come from, so why not make it easy for people to share those ideas.

By the end of 2007 I had designed an architecture using SOA (service oriented architecture) using open source products that would do most of what I needed. Then, in 2008 Google announced the “Project 10^100” competition. I entered, confident that I would at least get honorable mention (alas, nothing came from this).

Then, in early 2010 I spent an hour discussing my idea with the CTO of a popular Cloud company. This CTO had a medical background, liked my idea, offered a few suggestions, and even offered to help. It was the perfect opportunity. But, I had just started a new position at work and this fell to the wayside. That was a shame, and I only have myself to blame. It is something that has bothered me for years.

It’s 2013, there are far more tools available today to make this platform a reality, and it still does not exist. The reason that I’m writing this is because the idea has merit, and think that there might be others who feel he same way and would like to work on making this dream a reality. It’s a change to leverage technology to potentially make a huge impact on society. And, it can create opportunities for people in regions that might otherwise be ignored to contribute to this greater good.

Idealistic? Maybe. Possible? Absolutely!

What’s so special about Spatial?

Posted on Updated on

Two years ago I was assigned some of the product management and product marketing work for a new version of a database product we were releasing. To me this was the trifecta of bad fortune. I didn’t mind product marketing but knew it took a lot of work to do it well. I didn’t feel that product management was a real challenge (I was so wrong here), and I really didn’t want to have anything to do with maps.

I was so wrong in so many ways. I didn’t realize that real product management was just as much work as product marketing. And, I learned that geospatial was far more than just maps. It was quite an eye-opening experience for me – one that turned out to be very valuable as well.

First, let me start by saying that I now have a huge appreciation for Cartography. I never realized how complex mapmaking really is, and how there just as much art as there is science (a lot like programming). Maps can be so much more than just simple drawings.

I had a great teacher when it came to geospatial – Tyler Mitchell (@spatialguru). He showed me the power of overlaying tabular business data with common spatial data (addresses, zip / postal codes, coordinates) and presenting the “conglomeration of data” in layers that made things easier to understand. People buy easy, so that is good in my book.

The more I thought about this technology – simple points, lines, and area combined with powerful functions, the more I began to think about other uses. I realized that you could use it to correlate very different data sets and graphically show relationships that would otherwise extremely difficult to make.

Think about having access to population data, demographic data, business and housing data, crime data, health / disease data, etc.  Now, think about a simple and easy to use graphical dashboard that lets you overlay as many of those data sets as you wanted. Within seconds you see very specific clusters of data that is correlated geographically.

Some data may only be granular to a zip code or city, but other data will allow you to identify patterns down to specific streets and neighborhoods. Just think of how something so simple can help you make decisions that are so much better. The interesting thing is how few businesses are really taking advantage of this cost-effective technology.

If that wasn’t enough, just think about location aware applications, the proliferation of smart devices that completely lend themselves to so many helpful and lucrative mobile applications. Even more than that, they make those devices more helpful and user friendly. Just think about how easy it is to find the nearest Indian restaurant when the thought of curry for lunch hits you.  And these things are just the tip of the iceberg.

What a lucky day it was for me when I was assigned this work that I did not want. Little did I know that it would change the way that I think about so many things. That’s just the way things work out sometimes.

My perspective on Big Data

Posted on Updated on

Ever since I worked on redesigning a risk management system at an insurance company (1994-1995) I was impressed at how better decisions could be made with more data – assuming it was the right data.  The concept of, “What is the right data?” has intrigued me for years, as what may seem common sense today could have been unknown 5-10 years ago and could be completely passé 5-10 years from now. Context becomes very important because of the variability and relevance of data over time.

This is what makes Big Data interesting. There really is no right or wrong answer or definition. Having a framework to define, categorize, and use that data is important. And at some point being able to refer to the data in-context will be very important as well. Just think about how challenging it could be to compare scenarios or events from 5 years ago with those of today. It’s likely not an apples-to-apples comparison but could certainly be done. The concept of maximizing the value of data is pretty cool stuff.

The way I think of Big Data is similar to a water tributary system. Water enters the system many ways – rain from the clouds, sprinkles from private and public supplies, runoff, overflow, etc.  It also has many interesting dimensions, such as quality/purity (not necessarily the same due to different aspects of need), velocity, depth, capacity, and so forth. Not all water gets into the tributary system (e.g., some is absorbed into the groundwater tables, and some evaporate) – just as some data loss should be anticipated.

Image of the world with a water hose wrapped around it.

If you think in terms of streams, ponds, rivers, lakes, reservoirs, deltas, etc. there are many relevant analogies that can be made. And just like the course of a river may change over time, data in our “big data” water tributary system could also change over time.

Another part of my thinking is based on an experience I had about a decade ago (2002 – 2003 timeframe) working on a project for a Nanotech company. In their labs, they were testing various things. There were particles that changed reflectivity based on the temperature that was embedded in shingles and paint. There were very small batteries that could be recharged tens of thousands of times, were light and had more capacity than a common 12-volt car battery.

And, there was a section where they were doing “biometric testing” for the military. I have since read articles about things like smart fabrics that could monitor the health of a soldier and do things like apply basic first aid and notify others once a problem was detected.  This company felt that by 2020 advanced nanotechnology would be widely used by the military, and by 2025 it would be in wide commercial use.  Is that still a possibility? Who knows…

Much of what you read today is about the exponential growth of data. I agree with that, but as stated earlier, and this is important, I believe that the nature of and sources of that data will change significantly.  For example, nano-particles in engine oil will provide information about temperature, engine speed and load, and even things like rapid changes in movement (fast take-off or stops, quick turns). The nanoparticles in the paint will provide weather conditions. The nanoparticles on the seat upholstery will provide information about occupants (number, size, weight). Sort of like the “sensor web,” from the original Kevin Delin perspective. A lot of “Information of Things” data will be generated, but then what?

I believe that time will become an important aspect of every piece of data, and that location (X, Y, and Z coordinates) will be just as important. But, not every sensor will collect location (spatial data). I do believe there will be multiple data aggregators in common use at common points (your car, your house, your watch). Those aggregators will package the available data in something akin to an XML object, which allows flexibility.  From my perspective, this is where things become very interesting relative to commercial use and data privacy.

Currently, companies like Google make a lot of money from aggregating data from multiple sources, correlating it to a variety of attributes, and then selling knowledge derived from that plethora of data. I believe that there will be opportunities for individuals to use “data exchanges” to manage, sell, and directly benefit from their own data. The more interesting their data, the more value it has and the more benefit it provides to the person selling it. This could have a huge economic impact, and that would foster both the use and expansion of various commercial ecosystems required to manage the commercial and privacy aspects of this technology.

The next logical step in this vision is “smart everything.” For example, you could buy a shirt that is just a shirt. But, for an extra cost, you could turn-on medical monitoring or refractive heating/cooling. And, if you felt there was a market for extra dimensions of data that could benefit you financially, then you could enable those sensors as well. Just think of the potential impact that technology would make to commerce in this scenario.

This is what I personally believe will happen within the next decade or so. This won’t be the only type of or use of big data. Rather, there will be many valid types and uses of data – some complementary and some completely discrete. It has the potential to become a confusing mess. But, people will find ways to ingest, categorize, and correlate data to create value with it – today or in the future.

Utilizing data will become an increasingly competitive advantage for people and companies knowing how to do something interesting and useful with it. Who knows what will be viewed as valuable data 5-10 years from now, but it will likely be different than what we view as valuable data today.

So, what are your thoughts? Can we predict the future based on the past? Or, is it simply enough to create platforms that are powerful enough, flexible enough, and extensible enough to change our understanding as our perspective of what is important changes? Either way it will be fun!